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1. Introduction and outline

A singularity of a tiling is a point P for which any circular disc

centered at P intersects an infinite number of tiles. Hence,

tilings with singular points are not locally finite and are clas-

sified among tilings that are not ‘well behaved’ (Grünbaum &

Shephard, 1987). Geometric and topological properties of

tilings with singularities have been investigated by Breen

(1983), Nielsen (1990) and Sushida et al. (2012).

Symmetric colorings of tilings with a singular point were

obtained by Lück (2010) by distorting certain colorings of

regular Euclidean tilings. However, it was found that not all

colorings of regular tilings could be transformed into colorings

of tilings with a singular point, because some colorings were

incompatible with the tiling’s rotational symmetry. Further-

more, it was surmised that there is a maximum number of

colors for such colorings of a tiling with singularity. In Fig.

1(a), we have recreated a coloring of a tiling with a singularity

from Fig. 6 of Lück (2010). Fig. 1(b) shows the coloring of a

regular tiling by squares from which Fig. 1(a) was obtained.

Other colorings of the square tiling also compatible with the

rotational symmetry of the tiling with singularity were found

to have 1, 2, 5, 10, 25 and 50 colors only.

In this contribution, we provide a mathematical basis for the

observations made by Lück (2010). We begin by introducing in

x2 the framework used in this paper, together with some

known results. In x3 we discuss the conformal maps that are

applied on regular Euclidean tilings which yield tilings with a

singularity. In x4, a correspondence between the symmetry

groups of the regular tilings and their images under the

conformal maps is established. This allows us to determine the

symmetry group of the tiling with singularity, which turns out

to be isomorphic to a finite cyclic or finite dihedral group. In x5

we focus on the symmetry of colorings of tilings with a

singularity. We use a method similar to that of Lück (2010) to

obtain colorings of tilings with a singularity: conformal maps

are applied on sublattice colorings of regular Euclidean tilings.

However, applying a conformal map on a coloring of a regular

tiling does not always yield a coloring of the corresponding

tiling with singularity. Consequently, a compatibility condition
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between a sublattice coloring of a regular tiling and a

conformal map is established. Furthermore, for colorings

compatible with a conformal map, we identify a necessary and

sufficient condition so that a symmetry of the uncolored tiling

with singularity is a color symmetry of the resulting coloring of

the tiling. Lastly, we determine the maximum number of colors

of a chirally perfect coloring of the tiling with a singularity

obtained from compatible ideal colorings of the associated

regular tiling. Several examples are presented in x6.

2. Preliminaries

A planar tile is any set T in the Euclidean plane that is the

closure of its interior. Here, tiles are always bounded and,

consequently, compact. A tiling of R2 is a set of tiles

T ¼ fTigi2N, such that [i2NTi ¼ R
2 and intðTiÞ \ intðTjÞ ¼ ;

for all i 6¼ j. That is, T is both a packing and a covering of R2.

A tiling T of R2 is said to be locally finite if, for any given

point x 2 R2, every circular disc centered at x intersects only a

finite number of tiles of T (Grünbaum & Shephard, 1987;

Baake & Grimm, 2013). Hence, if T is not locally finite, then

there exists at least one point x0 2 R
2 such that, for all r> 0,

Bðx0; rÞ \ T 6¼ ; for an infinite number of T 2 T . Such a point

is called a singular point of the tiling.

We are primarily concerned with symmetries of tilings with

a singularity at the origin that are obtained by applying

conformal maps on the three types of regular tilings of R2: the

ð44Þ tiling (regular tiling by squares), the ð63Þ tiling (regular

tiling by hexagons) and the ð36Þ tiling (regular tiling by

triangles). Furthermore, we determine the color symmetries of

colorings of tilings with a singularity obtained from certain

colorings of regular tilings. To this end, the following defini-

tions taken from Grünbaum & Shephard (1987) are needed.

Let X be a set of points or a set of tiles in R2, with symmetry

group SðXÞ. We refer to the subgroup of SðXÞ containing all

direct symmetries of X as the rotation group of X, and denote

it by RðXÞ. Meanwhile, the subgroup of SðXÞ containing all

translation symmetries of X is called the translation group of

X, and is written TðXÞ.

A coloring of X is a surjective map CX : X ! K, where K is

a finite set of m colors. Equivalently, a coloring CX of X may be

viewed as a partition fXig
m
i¼1 of X. A color symmetry of CX is an

element of SðXÞ that permutes the colors of CX. The setHCX
of

all color symmetries of CX, that is HCX
¼ fh 2 SðXÞ j 9

permutation �h on K such that 8x 2 X , CXðhðxÞÞ ¼ �hðCXðhÞÞg,

forms a subgroup of SðXÞ. We call this the color symmetry

group of the coloring CX . IfHCX
¼ SðXÞ, then CX is said to be a

perfect coloring of X. If HCX
contains RðXÞ, then CX is called

a chirally perfect coloring of X (Rigby, 1998). To distinguish a

perfect coloring from a chirally perfect coloring, we sometimes

refer to a perfect coloring as a fully perfect coloring.

Of particular interest are sublattice colorings of square and

hexagonal lattices (Moody & Patera, 1994; De las Peñas &

Felix, 2007). A sublattice � of a lattice �0 is a subgroup of

finite index m in �0. We assign a unique color to each coset

of � to obtain a coloring of �0. That is, the sublattice coloring

of �0 induced by � is given by C�0
¼ fXig

m
i¼1, where Xi,

i 2 f1; . . . ;mg, is a coset of �. Since the number of colors in

the coloring of �0 induced by � is the index of � in �0, we

sometimes refer to the number of colors as the color index of

the coloring. Furthermore, the translation symmetries of �0

are always contained in HC�0
because they map cosets of � to

cosets of � [see Theorem 1 of De las Peñas & Felix (2007)].

Finally, we describe the setting that we will use throughout

the paper.

We identify the Euclidean plane R2 with the complex plane

C. If z 2 C, we denote the modulus of z by jzj, and its

conjugate by z. We use i and ! to represent ð�1Þ1=2 and

expð2�i=3Þ, respectively. Furthermore, we associate the square

lattice with the ring Z½i� ¼ faþ bi j a; b 2 Zg of Gaussian

integers, while the hexagonal lattice is identified with the ring

Z½!� ¼ faþ b! j a; b 2 Zg of Eisenstein integers. It is known

that if � ¼ i or � ¼ !, then Z½�� is a principal ideal domain.

Also, given � 2 Z½��, the ideal ð�Þ generated by � is of index

j�j2 in Z½��.
Let T be a regular tiling, P be the set of centers of tiles of

T , and � be the orbit of the origin under the action of TðT Þ.

We superimpose the complex plane over T in the following

manner:

T is the ð44Þ tiling: the set P is a square lattice. We super-

impose C over T so that P coincides with the points of Z½i�.

Note that � ¼ Z½i�.
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Figure 1
(a) Coloring of a tiling with a singularity and (b) corresponding coloring
of the ð44Þ tiling.

Figure 2
(36) Tiling: the black points represent the ideal P0 ¼ ð2þ !Þ, the blue
points (thick outer shell) represent P1 ¼ �1þ ð2þ !Þ, and the red
points (thin outer shell) represent P2 ¼ 1þ ð2þ !Þ.



T is the ð63Þ tiling: the set P forms a hexagonal lattice. We

view T in C in such a way that P coincides with Z½!�, from

which follows � ¼ Z½!�.
T is the ð36Þ tiling: the set P is not a lattice, but nonetheless

forms a crystallographic point packing (Conway & Sloane,

1999; Baake & Grimm, 2013). Superimpose C over T so that

the set P0 of vertices of T coincides with the points of the

ideal ð2þ !Þ of Z½!�. The two other cosets of P0 in Z½!� are

P1 ¼ �1þ ð2þ !Þ and P2 ¼ 1þ ð2þ !Þ. Note that P =

P1 [ P2, while � ¼ P0. This is illustrated in Fig. 2.

In all three cases the symmetry group of T is SðT Þ ¼

hh1; h2; h3; h4i, where h1 is a rotation, h2 is a reflection, and h3

and h4 are translations. Table 1 shows these symmetries as

complex maps for the three regular tilings.

Generating functions for the number of colors in perfect

colorings of Z½i� and Z½!� are known (Baake & Grimm, 2004).

On the other hand, the following result from Bugarin et al.

(2013) provides necessary and sufficient conditions for a

sublattice coloring of Z½i� or of Z½!� to be chirally or fully

perfect.

Theorem 1. Let � 2 fi; !g and CZ½�� be a coloring induced by

the sublattice �. Then the coloring CZ½�� is chirally perfect if

and only if � is an ideal of Z½��. In addition, if � 2 Z½��, then

the coloring CZ½�� induced by ð�Þ is perfect if and only if

� ¼ ��j� for some j 2 Z.

Theorem 1 states that a sublattice coloring of Z½i� or of

Z½!� is chirally perfect if and only if the sublattice that induces

the coloring is an ideal of the respective lattice. We refer to

such colorings as ideal colorings of the lattice. Furthermore,

this ideal coloring is perfect if its generator is balanced, that is,

the generator and its conjugate are associates (Washington,

1996).

3. Family of tilings with a singularity via conformal
mappings

We consider the map ’� : C! C
� :¼ C n f0g defined by

’�ðzÞ ¼ exp
2�iz

�

� �
¼ exp

2�i

j�j2
�z

� �
ð1Þ

where � 2 C�. The map ’� is conformal, since it is the

composition of the exponential map and a linear map which

are both conformal (Brown & Churchill, 2008).

The following lemma establishes which points of C have the

same image under ’�.

Lemma 2. Let ’�ðzÞ ¼ expð2�iz=�Þ, where � 2 C�. Given

z1; z2 2 C, then ’�ðz1Þ ¼ ’�ðz2Þ if and only if z2 ¼ z1 þ k� for

some k 2 Z.

We now apply ’� on a regular tiling T to obtain a tiling

with a singularity at the origin. For this, we need to find

conditions on � that guarantee that S � :¼ f’�ðTÞ j T 2 T g is

a tiling of C�.

Theorem 3. Let T be a regular tiling, � be the orbit of the

origin under the action of TðT Þ and ’�ðzÞ ¼ expð2�iz=�Þ. If

� 2 � and

j�j> maxfjz1 � z2j j z1; z2 2 @T; T 2 T g

(where @T denotes the boundary of tile T), then

S � ¼ f’�ðTÞ j T 2 T g

is a tiling of C�.

Proof. Let T 2 T . Clearly, ’�ð@TÞ is a closed curve.

Suppose z1; z2 2 @T such that ’�ðz1Þ ¼ ’�ðz2Þ. Then

z1 ¼ z2 þ k� for some k 2 Z by Lemma 2. We have

j�j> jz1 � z2j ¼ jkjj�j which implies that k ¼ 0 and z1 ¼ z2.

Thus, ’� maps @T one-to-one and onto ’�ð@TÞ. This means

that ’�ð@TÞ is simple, and it follows from ch. 3 of Bieberbach

(1953) that intðTÞ is also mapped one-to-one and onto

intð’�ð@TÞÞ. This implies that ’�ðTÞ is a tile.

Since T is a covering of C and ’� is onto, S � is a covering

of C�. All that remains is to show that S � is a packing of C�.

Indeed, let T1;T2 2 T such that intð’�ðT1ÞÞ\ intð’�ðT2ÞÞ 6¼ ;.

Then there exist z1 2 intðT1Þ and z2 2 intðT2Þ such that

z2 ¼ z1 þ k� for some k 2 Z by Lemma 2. Since � 2 �, we

have z2 2 intðT1 þ k�Þ. Hence, T2 ¼ T1 þ k� because T is a

packing of C, and thus, ’�ðT1Þ ¼ ’�ðT2Þ. &

Henceforth, it shall be assumed that � satisfies the required

conditions stated in Theorem 3 so that S � is a tiling of C�. We

say that such an � is admissible. We make the following

observations about admissible values of �:

(i) Since � 2 �, there exist unique integers L and R such

that � ¼ Lþ Ri, � ¼ Lþ R! and � ¼ ðLþ R!Þð2þ !Þ
¼ ð2L� RÞ þ ðLþ RÞ! for the ð44Þ, ð63Þ and ð36Þ tilings,

respectively. We now say that L and R are the integers that

determine �.

(ii) Since j�j> maxfjz1 � z2j j z1; z2 2 @T; T 2 T g, j�j is

greater than 21=2, ½2ð31=2Þ�=3 and 31=2 for the ð44Þ, ð63Þ and ð36Þ

tilings, respectively.

The following proposition states that if � is an admissible

value, then replacing � by any of its associates in equation (1)

yields the same tiling S �. Thus, to exhaust all possible S �, it is

enough to consider one representative from each associate

class of Z½��.

Proposition 4. Let ’�1
ðzÞ ¼ expð2�iz=�1Þ, ’�2

ðzÞ ¼

expð2�iz=�2Þ and � 2 fi; !g. If �1 and �2 are associates in Z½��,
then S �1

¼ S �2
.
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Table 1
Symmetries of regular tilings.

Tiling ð44Þ ð63Þ ð36Þ

h1ðzÞ ¼ iz ð1þ !Þz ð1þ !Þz
h2ðzÞ ¼ z z z
h3ðzÞ ¼ zþ 1 zþ 1 zþ ð2þ !Þ
h4ðzÞ ¼ zþ i zþ ! zþ ð1� !Þ
SðT Þ of type p4m or �442 p6m or �632 p6m or �632



Proof. Let � ¼ i if T is the ð44Þ tiling, and � ¼ ! if T is the

ð63Þ or ð36Þ tiling. If �1 and �2 are associates, then �2 ¼ "�1 for

some unit " 2 Z½��. Now f ðzÞ ¼ "z is a symmetry of T , so

f ðTÞ ¼ "T 2 T whenever T 2 T . The conclusion then

follows since ’�1
ðTÞ ¼ ’�2

ð"TÞ. &

We now describe the tilings S �. Clearly, the edges of T are

contained in lines of C. Thus, the map ’� sends an edge of T

to one of the following: an arc of a logarithmic spiral with the

asymptotic point at the origin, an arc of a circle centered at the

origin, and a segment of an open-ended ray emanating from

the origin. This is the reason why S � ends up having a singular

point at the origin.

The edges of T can be partitioned into equivalence classes,

where two edges belong to the same equivalence class if they

are parallel. There are two equivalence classes of parallel

edges for the ð44Þ tiling, and three for the ð63Þ and ð36Þ tilings. It

is easy to verify that the images of edges that belong to the

same equivalence class are of the same type.

The image under ’� of an equivalence class of parallel edges

in T depends on the prime decomposition of � in Z½��, where

� ¼ i if T is the ð44Þ tiling and � ¼ ! if T is the ð63Þ or ð36Þ

tiling. Hence, we categorize all possible S � into three classes.

Class 1 tilings: � is not balanced.

Class 2 tilings: � is balanced and the factorization of �
contains an odd power of a factor of the ramified prime in Z½��,
that is, we can write � ¼ "ðL� L�Þ for some unit " in Z½�� and

L 2 Z.

Class 3 tilings: � is an integer multiple of a unit in Z½��, that

is, � ¼ "L for some unit " in Z½�� and L 2 Z.

Fig. 3 shows where � lies in the complex plane for each of

the above classes. We also summarize the curves that bound

the tiles of S � for each class in Table 2.

Let ½‘� be an equivalence class of edges of T . Observe from

Table 2 that if ’�ð½‘�Þ is a set of (arcs of) logarithmic spirals or

a set of (segments of) rays, then it contains only a finite

number of elements. In addition, as we will see in the next

section, the spirals and rays are spread out symmetrically

about the origin. On the other hand, if ’�ð½‘�Þ is a set of (arcs
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Figure 3
(a) (44) Tiling, (b) (63) and (36) tilings. The singular tiling S � falls under
Class 1 if � lies in the gray area, under Class 2 if � lies on one of the black
lines, and under Class 3 if � lies on one of the white lines.

Table 2
Three classes of tilings with a singularity at the origin and the curves that
bound their tiles.

Class T Images of edges of T under ’�

1 ð44Þ Two sets of spirals that contain jLj and jRj spirals, spirals in
one set are positively oriented while spirals in the other set
are negatively oriented

ð63Þ Arcs of three sets of spirals that contain j2L� Rj, j2R� Lj
and jLþ Rj spirals, spirals in two sets go in the same
direction while spirals in the third set go in the opposite
direction

ð36Þ Three sets of spirals that contain jLj, jRj and jL� Rj spirals,
spirals in two sets go in the same direction while spirals in
the third set go in the opposite direction

2 ð44Þ jLj positively and jLj negatively oriented spirals
ð63Þ Arcs of j3Lj positively and j3Lj negatively oriented spirals,

arcs of circles centered at the origin
ð36Þ jLj positively and jLj negatively oriented spirals, circles

centered at the origin
3 ð44Þ jLj rays emanating from the origin, circles centered at the

origin
ð63Þ Arcs of jLj positively and jLj negatively oriented spirals,

segments of j2Lj rays emanating from the origin
ð36Þ jL=3j positively and jL=3j negatively oriented spirals, j2L=3j

rays emanating from the origin

Figure 4
(a) Class 1 (� ¼ 4þ 6i), (b) Class 2 (� ¼ �5þ 5i), (c) Class 3 (� ¼ 4).
Tilings with singularity obtained by applying the conformal map ’� on the
ð44Þ tiling.



of) circles, then it is countably infinite. Here, the radii of the

circles increase geometrically. Fig. 4 shows an example from

each class for the ð44Þ tiling.

4. Symmetries of S �

Since S � has only one singular point, a symmetry of S � must

fix that point. This implies that SðS �Þ is a group of isometries

that fix the origin and, consequently, it must be isomorphic to

some finite cyclic group Cn or finite dihedral group Dn. Thus,

in order to identify SðS �Þ, we only need to find a generator of

RðS �Þ and to determine whether any reflection symmetry

leaves S � invariant. For this, we turn to the symmetries of T .

Lemma 5. Let T be a regular tiling, ’�ðzÞ ¼ expð2�iz=�Þ
with � admissible, and S � ¼ f’�ðTÞ j T 2 T g. If g is an

isometry of C� such that there exists a symmetry f 2 SðT Þ for

which g’� ¼ ’�f , then g 2 SðS �Þ.

Proof. We have

gðS �Þ ¼ gð’�ðT ÞÞ ¼ ’�ðf ðT ÞÞ ¼ ’�ðT Þ ¼ S �:

&

If g 2 SðS �Þ and f 2 SðT Þ for which the diagram in Fig. 5

commutes, then we say that f corresponds to g. Note that an

f 2 SðT Þ that corresponds to g 2 SðS �Þ is not unique. Indeed,

if h ¼ f þ k� 2 SðT Þ for some k 2 Z, then h also corresponds

to g. We now use Lemma 5 to find the symmetry group of S �.

Theorem 6. Let T be a regular tiling, ’�ðzÞ ¼ expð2�iz=�Þ
with � admissible, and S � ¼ f’�ðTÞ j T 2 T g. Suppose

n ¼ gcdðL;RÞ, where L and R are the integers that determine

�. Define g1ðzÞ ¼ expð2�i=nÞz and g2ðzÞ ¼ z.

(a) If � is not balanced, then SðS �Þ ¼ hg1i ffi Cn.

(b) If � is balanced, then SðS �Þ ¼ hg1; g2i ffi Dn.

Proof. Let m 2 N such that m j �. Then

gðzÞ ¼ expð2�i=mÞz 2 SðS �Þ, and a symmetry of T that

corresponds to g is the translation given by f ðzÞ ¼ zþ �=m.

Hence, the rotation group RðS �Þ is generated by g1.

If � is not balanced, then S � falls under Class 1. Since the

number of positively oriented spirals and the number of

negatively oriented spirals are not the same (see Table 2), S �

cannot have a reflection symmetry.

If � is balanced, then g2 leaves S � invariant. Indeed, a

symmetry of T that corresponds to g2 is the reflection f2 given

by f2ðzÞ ¼ "z for some unit " of Z½�� [where � ¼ i if T is the

ð44Þ tiling and � ¼ ! if T is the ð63Þ or ð36Þ tiling]. &

Not only does Theorem 6 give us the symmetry group of S �,

but it also tells us that for any positive integer n, it is possible

to construct a tiling S � that has rotation symmetry of order n

about the origin by choosing a suitable �. Moreover, we obtain

that for every g 2 SðS �Þ, there exists f 2 SðT Þ such that f

corresponds to g.

In fact, the tilings S � are not only symmetrical, but also self-

similar with a scaling factor that is some power of e. This has

also been observed by Lück (2010), where some tilings with a

singularity even have scaling factors related to quasiperiodic

patterns such as the golden ratio �. However, this aspect of S �

will not be discussed here but will be published elsewhere.

There is a one-to-one correspondence � between a regular

tiling T of R2 and the set P of centers of tiles of T . By

inspection, we see that T and P have the same symmetry

group. Furthermore, �ðf ðTÞÞ ¼ f ð�ðTÞÞ holds for all f 2 SðT Þ

and T 2 T . That is, the (group) action of SðT Þ on T is

equivalent to its action on P. This means that every coloring of

T may be viewed as a coloring of P, and both colorings have

the same color symmetry group. We now proceed to show a

similar relationship between S � and Q� :¼ f’�ðtÞ j t 2 Pg.

Lemma 7. Let T be a regular tiling, P be the set of centers

of T and ’�ðzÞ ¼ expð2�iz=�Þ with � admissible. Suppose

S � ¼ f’�ðTÞ j T 2 T g, Q� ¼ f’�ðtÞ j t 2 Pg and � : T ! P

is the map that sends a tile of T to its center. Then the map

� : S � ! Q� that sends the image of a tile under ’� to

the image of its center under ’�, that is, ð�’�ÞðTÞ ¼ ð’��ÞðTÞ
for T 2 T , defines a one-to-one correspondence between S �

and Q�.

Proof. Suppose that T1;T2 2 T such that ’�ðT1Þ ¼ ’�ðT2Þ.

Then there exists t0 2 T1 such that ’�ðt
0Þ ¼ ’�ð�ðT2ÞÞ. By

Lemma 2, t0 ¼ �ðT2Þ þ k� for some k 2 Z. Since �ðT2Þ 2 P

and � 2 �, it follows that t0 ¼ �ðT1Þ. Consequently, � is well

defined.

Now assume that �ð’�ðT1ÞÞ ¼ �ð’�ðT2ÞÞ. Then

’�ð�ðT1ÞÞ ¼ ’�ð�ðT2ÞÞ. This implies that �ðT1Þ ¼ �ðT2Þ þ k�
for some k 2 Z. Since � 2 �, T1 ¼ T2 þ k� and we obtain

’�ðT1Þ ¼ ’�ðT2Þ. Thus, � is injective. Clearly, � is surjective

since � is surjective. &

Lemma 7 gives us the commutative diagram in Fig. 6.

Theorem 8. Let P be the set of centers of a regular tiling

T . Suppose ’�ðzÞ ¼ expð2�iz=�Þ with � admissible,

S � ¼ f’�ðTÞ j T 2 T g and Q� ¼ f’�ðtÞ j t 2 Pg. Then SðS �Þ

is a subgroup of SðQ�Þ and the actions of SðS �Þ on S � and on

Q� are equivalent.

Proof. Let g 2 SðS �Þ and ’�ðTÞ 2 S �. Suppose f 2 SðT Þ

corresponds to g. Then gðQ�Þ ¼ ’�ðf ðPÞÞ ¼ ’�ðPÞ ¼ Q�, and

so SðS �Þ � SðQ�Þ. Let � be as defined in Lemma 7. Since the

action of f on T is equivalent to its action on P, we have
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Figure 5
Commutative diagram involving the maps ’�, g and f.



ðg�Þð’�ðTÞÞ ¼ gð’�ð�ðTÞÞÞ ¼ ’�ðf ð�ðTÞÞÞ

¼ ’�ð�ðf ðTÞÞÞ ¼ �ð’�ðf ðTÞÞÞ ¼ ð�gÞð’�ðTÞÞ:

This shows that the action of SðS �Þ on S � is equivalent to its

action on Q�. &

Hence, there is a one-to-one correspondence between

colorings of S � and colorings of Q� via the map �. Further-

more, elements of SðS �Þ that are color symmetries of a

coloring of Q� are also color symmetries of the associated

coloring of S �.

An open question at this point is whether or not SðS �Þ is

strictly contained in SðQ�Þ. Note that the points in Q� are not

necessarily the geometric centers of the tiles in S �, and so it

might happen that Q� is more symmetric than S �. None-

theless, it suffices that SðS �Þ is a subgroup of SðQ�Þ for the rest

of the paper.

5. Color symmetries of S �

Our aim in this section is to come up with chirally and fully

perfect colorings of the tiling S � ¼ ’�ðT Þ that have a singu-

larity at the origin. In Lemma 7, we defined � to be the

bijection that sends a tile T 2 T to its center t 2 P, and � to be

the bijection that sends ’�ðTÞ 2 S � to ’�ð�ðTÞÞ 2 Q�. If

CP ¼ fXig
m
i¼1 is a coloring of P, then CT ¼ f�

�1ðXiÞg
m
i¼1 gives a

coloring of T . Similarly, if CQ�
¼ fYig

k
i¼1 is a coloring of Q�,

then CS �
¼ f��1ðYiÞg

k
i¼1 yields a coloring of S �. In addition,

Theorem 8 assures us that if the elements of RðS �Þ [or SðS �Þ]

permute the colors of CQ�
, then CS �

is a chirally (or fully)

perfect coloring. All that remains is to obtain colorings of Q�

from colorings of P.

5.1. Ideal colorings of P

We start by identifying the chirally and fully perfect color-

ings of the set P of centers of the regular tiling T . If T is the

ð44Þ or the ð63Þ tiling, then P ¼ Z½i� or P ¼ Z½!�. Hence,

Theorem 1 applies and we already have the chirally and fully

perfect colorings of P.

In the case where T is the ð36Þ tiling, P is not a lattice.

Nonetheless, a coloring of P may still be obtained from

colorings of the lattice Z½!�. Indeed, let CZ½!� ¼ fXig
m
i¼1 be the

coloring of Z½!� induced by a sublattice � of Z½!�. Since

P 	 Z½!�, we obtain a coloring of P from CZ½!� given by

CP ¼ fXi \ P j Xi \ P 6¼ ;; 1 
 i 
 mg:

When needed, we re-index so that CP ¼ fXi \ Pgm
0

i¼1 for some

m0 
 m. In fact, m0 is either m or ð2=3Þm, as shown in the next

lemma.

Lemma 9. Let � be a sublattice of index m in Z½!�, and

CZ½!� ¼ fXig
m
i¼1 be the coloring of Z½!� induced by �.

(a) If � is a sublattice of the ideal P0 ¼ ð2þ !Þ, then the

coloring of P ¼ Z½!� n P0 obtained from CZ½!� is CP ¼ fXig
m0

i¼1,

where m0 ¼ ð2=3Þm.

(b) If � is not a sublattice of P0, then the coloring of P

obtained from CZ½!� is

CP ¼ fXi \ Pgmi¼1:

Proof. Suppose � is a sublattice of P0 and Xi 2 CZ½!�. If Xi

contains an element of P0, then Xi � P0 and consequently

Xi \ P ¼ ;. Otherwise, Xi \ P ¼ Xi. Since m ¼

½Z½!� : P0�½P0 : �� ¼ 3½P0 : ��, the number of cosets of � that

lie entirely in P is m� ½P0 : �� ¼ ð2=3Þm. Therefore,

CP ¼ fXig
m0

i¼1, where m0 ¼ ð2=3Þm.

If � is not a sublattice of P0, then every Xi 2 CZ½!� must

contain an element which is not in P0. Hence, Xi \ P 6¼ ; for

all i 2 f1; . . . ;mg, which yields the claim. &

We now establish a relationship between perfect colorings

of Z½!� and perfect colorings of P. Observe that the generators

h1, h2, h3 and h4 of SðT Þ (see Table 1) permute P0,

P1 ¼ �1þ ð2þ !Þ and P2 ¼ 1þ ð2þ !Þ. In particular,

h1ðP0Þ ¼ P0, h1ðP1Þ ¼ P2 and h1ðP2Þ ¼ P1, while h2, h3 and h4

leave each coset invariant. We use this fact in the proofs of

Lemma 10 and Theorem 11.

Lemma 10. Let � be a sublattice of Z½!� such that

½Z½!� : �� ¼ m. Suppose CZ½!� is the coloring of Z½!� induced

by � and CP is the coloring of P obtained from CZ½!�. If

f 2 SðT Þ \Oð2Þ is a color symmetry of CP, then f is a color

symmetry of CZ½!�.

Proof. Let f 2 SðT Þ \Oð2Þ such that f ð�Þ ¼ �. Since

f 2 SðZ½!�Þ, we have that f ðt þ �Þ ¼ f ðtÞ þ � is a coset of �
for every coset t þ � of �. This implies that f permutes the

cosets of �. Thus, to prove that f is a color symmetry of CZ½!�, it

suffices to show that f leaves � invariant.

Let CZ½!� ¼ fXig
m
i¼1. First, we consider the case when � is a

sublattice of P0. Then CP ¼ fXig
m0

i¼1. By assumption, given

Xi 2 CP, f ðXiÞ ¼ Xj for some j 2 f1; . . . ;m0g. If we write

Xi ¼ ti þ � and Xj ¼ tj þ �, then for all ‘ 2 �,

f ðti þ ‘Þ 2 tj þ �. This implies that f ð‘Þ 2 ðtj � f ðtiÞÞ þ � ¼ �.

Hence, � contains f ð�Þ and so f ð�Þ ¼ � because f is an

isometry.

Now suppose � is not a sublattice of P0. We have

CP ¼ fXi \ Pgmi¼1. Let t0 2 � \ P0. Given t 2 � \ P, we must

have t0 þ t 2 P because P0 is a sublattice of Z½!� ¼ P0 [ P.

Hence, t0 þ t 2 � \ P. Since f permutes the colors of CP, f ðtÞ

and f ðt0 þ tÞ must belong to the same coset of �. We get

f ðt0Þ ¼ f ðt0 þ tÞ � f ðtÞ 2 �. Moreover, we have f ðt0Þ 2 P0.

Thus, f ð� \ P0Þ � � \ P0, and it follows that f ð� \ P0Þ =
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Figure 6
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� \ P0. We obtain f ð�Þ ¼ ð� \ P0Þ [ ðXj \ PÞ, for some

j 2 f1; . . . ;mg. However, f ð�Þ must be a sublattice of Z½!�, so

Xj ¼ � and f ð�Þ ¼ �. &

Theorem 11. Let � be a sublattice of index m in Z½!�. Then

the coloring CZ½!� of Z½!� induced by � is chirally (respectively,

fully) perfect if and only if the coloring CP of P obtained from

CZ½!� is chirally (respectively, fully) perfect.

Proof. If h1 permutes (and h2 permutes) the colors of CP,

then Lemma 10 guarantees that h1 permutes (and h2

permutes) the colors of CZ½!�. Since h3 and h4 are translation

symmetries of Z½!�, they must be color symmetries of CZ½!�.

This proves the backward direction.

Suppose CZ½!� ¼ fXig
m
i¼1 is chirally (fully) perfect. Then

given Xi 2 CZ½!� for which Xi \ P 6¼ ;, h1ðXiÞ ¼ Xj for some

j 2 f1; . . . ;mg. We then have h1ðXi \ PÞ ¼ Xj \ P 6¼ ;. Thus,

h1 permutes the colors of CP. In a similar manner, we can show

that h3, h4 (and h2) are also color symmetries of CP. &

Hence, even if T is the ð36Þ tiling, ideal colorings of Z½!�
give rise to chirally or fully perfect colorings of P. Conversely,

if a coloring of P obtained from a sublattice coloring of Z½!� is
chirally or fully perfect, then the coloring of Z½!� must be an

ideal coloring.

5.2. Compatibility between sublattice colorings of P and
conformal maps ua

Given a coloring CP ¼ fXig
m
i¼1 of P, the set f’�ðXiÞg

m
i¼1 does

not necessarily yield a coloring of Q�. The problem is since ’�
is not one-to-one, it is possible that ’�ðXiÞ \ ’�ðXjÞ 6¼ ; for

some i; j 2 f1; . . . ;mg and i 6¼ j. In that case, two points of P

that are assigned different colors in CP have the same image

under ’�. If it happens that f’�ðXiÞg
m
i¼1 is a coloring of Q�, then

we say that CP is compatible with ’�. That is, each point of Q� is

assigned exactly one color when ’� is applied on CP. We

denote the coloring of Q� obtained in this manner by ’�ðCPÞ.

We now characterize the sublattice colorings of P that are

compatible with ’�.

Theorem 12. Let P be the set of centers of a regular tiling,

and ’�ðzÞ ¼ expð2�iz=�Þ with � admissible. Then the coloring

CP of P induced by a sublattice � is compatible with ’� if and

only if � 2 �.

Proof. Suppose CP is compatible with ’�. Let t 2 P. Since

� 2 �, t þ � 2 P. By Lemma 2, ’�ðtÞ ¼ ’�ðt þ �Þ and so t and

t þ � must belong to the same coset of �. Hence,

� ¼ ðt þ �Þ � t 2 �.

Conversely, let t; t0 2 P such that ’�ðtÞ ¼ ’�ðt
0Þ. This means

that for some k 2 Z, t0 � t ¼ k� 2 � since � 2 �. Thus, t0 and t

are in the same coset of �. &

The following is immediate from Theorem 12.

Corollary 13. Let P be the set of centers of a regular tiling,

CP the coloring of P induced by an ideal ð�Þ and ’�ðzÞ ¼

expð2�iz=�Þ with � admissible. Then CP is compatible with ’�
if and only if ð�Þ � ð�Þ.

Hence, given ’�, we can identify all ideal colorings of P that

are compatible with ’� by looking at the prime decomposition

of � in Z½��, where � ¼ i if T is the ð44Þ tiling and � ¼ ! if T is

the ð63Þ or ð36Þ tiling.

5.3. Perfect colorings of S �

Let CP be a coloring of P that is compatible with ’�. We now

give a necessary and sufficient condition for g 2 SðS �Þ to be a

color symmetry of the coloring ’�ðCPÞ of Q�.

Theorem 14. Let P be the set of centers of a regular tiling,

and ’�ðzÞ ¼ expð2�iz=�Þ with � admissible. Suppose a

coloring CP of P is compatible with ’�. If g 2 SðS �Þ and

f 2 SðT Þ corresponds to g, then g is a color symmetry of the

coloring ’�ðCPÞ of Q� if and only if f is a color symmetry of CP.

Proof. Suppose g is a color symmetry of ’�ðCPÞ. If Xi 2 CP,

then ’�ðf ðXiÞÞ ¼ gð’�ðXiÞÞ ¼ ’�ðXjÞ for some Xj 2 CP. It

follows from Lemma 2 that f ðXiÞ ¼ Xj þ k� for some k 2 Z.

Since ’� is compatible with CP and ’�ðXjÞ ¼ ’�ðXj þ k�Þ, we

have f ðXiÞ ¼ Xj. Thus, f permutes the colors of CP.

In the other direction, let f be a color symmetry of CP. If

Xi 2 CP then gð’�ðXiÞÞ ¼ ’�ðf ðXiÞÞ ¼ ’�ðXjÞ for some

Xj 2 CP. Thus, g permutes the colors of ’�ðCPÞ. &

Theorem 14 provides a link between color symmetries of

colorings of P and symmetries of S � that permute the colors

of the corresponding coloring of Q�. The next corollary

follows from Theorem 1, Theorem 6 and Theorem 14.

Corollary 15. Let P be the set of centers of a regular tiling,

’�ðzÞ ¼ expð2�iz=�Þ with � admissible, and CP be the coloring

of P induced by an ideal ð�Þ that is compatible with ’�.

(a) Then the elements of RðS �Þ are color symmetries of the

coloring ’�ðCPÞ of Q�.

(b) If � and � are balanced, then the elements of SðS �Þ are

color symmetries of ’�ðCPÞ.

We should note here that not all chirally and fully perfect

colorings of S � arise from ideal colorings of P. In fact, every

coloring of P induced by a sublattice � that contains � will

yield a chirally perfect coloring of S �.

The next corollary confirms the observation by Lück (2010)

that there is an upper bound for the number of colors in

chirally perfect colorings of S � obtained from ideal colorings

of P.

Corollary 16. Let P be the set of centers of a regular tiling

and ’�ðzÞ ¼ expð2�iz=�Þ with � admissible. Suppose CP is an

ideal coloring of P that is compatible with ’�. Then there is an

upper bound M for the number of colors in the coloring ’�ðCPÞ

of Q�. In particular:

(a) if T is the ð44Þ or ð63Þ tiling, then M ¼ j�j2;

(b) if T is the ð36Þ tiling, then M ¼ j�j2 if � =2P0 ¼ ð2þ !Þ
and M ¼ ð2=3Þj�j2 if � 2 P0.
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Moreover, there exists a coloring of Q� derived from some

ideal coloring of P that has exactly M colors which are

permuted by elements of SðS �Þ.

Proof. It follows from Corollary 13 that ð�Þ is the ideal that

satisfies the compatibility condition and gives the most

number of colors. Then M ¼ ½Z½�� : ð�Þ� ¼ j�j2 if T is the ð44Þ

or ð63Þ tiling. Lemma 9 gives us the value of M if T is the ð36Þ

tiling. Finally, the elements of SðS �Þ permute the colors in

’�ðCPÞ obtained from CP induced by ð�Þ by Corollary 15. &

Note that the maximum number of colors in Corollary 16 is

an inherent property of the tiling S �, and hence depends on

the value of �. Thus, we can always find a singular tiling S �

whose upper limit on the number of colors is as large as we

wish by choosing a suitable admissible value of �.

However, unlike colorings of Q� obtained from ideal

colorings of P, there is no upper bound for the number of

colors of colorings of Q� obtained from sublattice colorings of

P. For instance, if � ¼ Lþ R� where R 6¼ 0, then the coloring

CP of P induced by the sublattice � generated by � and k is

compatible with ’� for all k 2 Z by Theorem 12. Observe that

the number of colors in CP is given by ½Z½�� : �� ¼ jkRj, which

can be made arbitrarily large by the choice of k.

6. Summary and examples

Given an admissible �, we applied the conformal map ’� on a

regular tiling T to come up with a tiling ðS �Þ with a singu-

larity at the origin. The symmetry group SðS �Þ is finite and

either cyclic or dihedral, and a correspondence between the

elements of SðT Þ and SðS �Þ allowed us to identify SðS �Þ.

Symmetric colorings of ðS �Þ may be obtained by applying

’� on compatible sublattice colorings CP of P. The compat-

ibility condition requires that the sublattice that induces CP

contains �. In particular, if the sublattice is the ideal ð�Þ, then

CP is compatible with ’� exactly if ð�Þ � ð�Þ. The coloring of

S � derived from this compatible ideal coloring is chirally

perfect. Furthermore, if � and � are both balanced, then the

resulting coloring of S � is perfect.

However, it is possible to obtain chirally (or fully) perfect

colorings of S � from sublattice colorings of P that

are not chirally (or fully) perfect. In fact, any sublattice

coloring of P that is compatible with ’� yields a chirally

perfect coloring of S �.

Lastly, the maximum number of colors for a coloring of S �

obtained from a compatible ideal coloring of P is j�j2 or

ð2=3Þj�j2. On the other hand, no such constraint applies

to colorings of S � derived from compatible sublattice color-

ings of P.

We end this paper with examples of chirally and fully

perfect colorings of tilings with a singular point obtained from

ideal colorings of lattices associated with regular tilings.

6.1. ð44Þ Tiling

Let � ¼ �5þ 5i. Then S � is a Class 2 tiling and

SðS �Þ ffi D5 is generated by g1ðzÞ ¼ expð2�i=5Þz and

g2ðzÞ ¼ z. The symmetries g1 and g2 of S � correspond to the

symmetries f1ðzÞ ¼ zþ ð�1þ iÞ and f2ðzÞ ¼ iz of T , respec-

tively. Ideal colorings of P ¼ Z½i� compatible with ’� are

induced by the ideals ð1Þ, ð�1þ iÞ, ð1þ 2iÞ, ð1� 2iÞ, ð1þ 3iÞ,

ð3þ iÞ, ð5Þ and ð�5þ 5iÞ. The colorings of S � that correspond

to the colorings of P induced by the ideals ð1Þ, ð�1þ iÞ, ð5Þ and

ð�5þ 5iÞ are fully perfect. The maximum color index is 50.

Fig. 1(a) shows a chirally perfect coloring of S � obtained from

the coloring of P induced by (2þ i).
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Figure 7
A fully perfect coloring of S �, with � ¼ 4, obtained from the coloring of
P induced by (2).

Figure 8
Perfect colorings of T and S �, with � ¼ 6, induced by (2).

Figure 9
A perfect coloring of S �, with � ¼ 10þ 2!, obtained from a coloring of
P induced by ð1þ 3!Þ.



Fig. 7 shows a coloring of a Class 3 tiling S �, where � ¼ 4,

obtained from the coloring of P induced by ð2Þ. Since 2 is

balanced, the coloring is fully perfect.

6.2. ð63Þ Tiling

If � ¼ 6, then S � is a Class 3 tiling. The generators of

SðS �Þ ffi D6 are g1ðzÞ ¼ expð�i=3Þz and g2ðzÞ ¼ z, which

correspond to the symmetries f1ðzÞ ¼ zþ 1 and f2ðzÞ ¼ �z of

T , respectively. The ideals ð1Þ, ð2þ !Þ, ð2Þ, ð3Þ, ð2þ 4!Þ and

ð6Þ induce colorings of P ¼ Z½!� that are compatible with ’�.

All resulting colorings of S � are perfect, and the maximum

color index is 36. Fig. 8 shows the perfect colorings of T and

S � induced by (2).

In Fig. 9, we have a coloring of a Class 1 tiling S � with

� ¼ 10þ 2!. The coloring is perfect and is induced by the

ideal ð1þ 3!Þ.

6.3. ð36Þ Tiling

We obtain a Class 1 tiling S � when � ¼ 2þ 10! ¼
ð4þ 6!Þð2þ !Þ. The symmetry group of S � is isomorphic to

C2, with generator g1ðzÞ ¼ �z that corresponds to the

symmetry f ðzÞ ¼ zþ ð1þ 5!Þ of T . Colorings of P ¼

Z½!� n ð2þ !Þ compatible with ’� are induced by the ideals

ð1Þ, ð1þ 2!Þ, ð2Þ, ð2þ 3!Þ, ð2þ 4!Þ, ð1þ 5!Þ, ð4þ 6!Þ and

ð2þ 10!Þ. The maximum color index is 56. Fig. 10 shows the

chirally perfect coloring of T and the fully perfect coloring of

S � induced by ð2þ 3!Þ.
Fig. 11 shows the fully perfect coloring of a Class 2 tiling S �,

where � ¼ �5þ 5! ¼ 5!ð2þ !Þ, obtained from a coloring of

P induced by ð1þ 2!Þ.
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Figure 10
A perfect coloring of S �, with � ¼ 2þ 10!, obtained from a coloring of
P induced by the ideal ð2þ 3!Þ.
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